

Volatile compounds in cocoa liquor

Table 1. Volatile compounds identified in the 10 cocoa varieties by GC-MS and corroborated by Koyats' retention indices [4]

Functional Group	#	Volatile Compounds	Kovats Indices		Quality	Concore Descontion
			Author	Literature	Quality	sensory Perception
Acids	1	Acetic acid	625	622	97	Vinegar, rancid, Acid
	2	Propanoic acid	710	702	77	Rancid
	3	2-methylpropanoic acid	779	785	80	butter, rancid
	4	3-methylbutanoic acid	854	848	93	Pungent, rancid cheese
	5	2-methylbutanoic acid	864	858	85	Cheese, rancid
	6	Octanoic acid	1197	1201	74	Cheese, rancid, butter
Alcohols	7	3-methyl-2-butanol	698	700	85	Floral
	8	2,3-butanediol	792	793	90	Floral
	9	2-heptanol	894	894	95	Floral, grass
	10	β-linalool	1090	1092	97	Floral
	11	2-nonanol	1094	1098	88	Floral
Aldehydes	13	2-phenylethanol	11,08	11,10	95	Main Floral, roses
	14	Benzaldebyde	955	959	96	Sweet almonds
	15	Phenylacetaldehyde	1029	1029	81	Sweet nutty
	16	Decanaldebyde	1185	1188	88	Roasted walnut
	17	2-nhenvl-2-butenal	1277	1281	97	Sweet cocoa almonds
	18	4-methyl-2-phenyl-2-pentenal	1378	1383	74	Cocoa sweet
	19	5-methyl-2-phenyl-2-hexenal	1475	1483	81	Cocoa, sweet
Ketones	20	2.3-Butapedione	590	591	88	Floral fruity
	21	3-hydroxy-2-butanone	705	710	95	Butter, fruity
	22	2-bentanone	882	889	82	Floral fruity
	23	1-phenvlethanone	1060	1062	92	Floral, almond
	24	2-nonanone	1087	1087	90	Floral, fruity
Esters	25	3-methylbutyl acetate	867	867	95	Banana, frutal
	26	Benzyl acetate	1154	1161	87	Pear fruity floral
	27	Ethyl benzoate	1162	1168	93	Fruity, floral
	28	Ethyl octanoate	1184	1192	89	Apple sweet
	29	2-phenylethyl acetate	1258	1264	90	Fruity, sweet
	30	Ethyl decanoate	1594	1591	81	Fruity
Pyrazines	31	2.3-dimethylpyrazine	909	911	94	Nutty, cocoa, roasted
	32	2.3.5-trimethylpyrazine	993	991	94	Nutty, almonds
	33	2.3.5.6-tetramethylpyrazine	1081	1086	98	Nutty, hazelnut, peanut
Others	34	2-furancarboxaldehyde	815	820	74	Floral, sweet
	35	Dihydro-2(3H)Furanone	906	910	79	Floral
	36	B-pinene	964	968	87	Pine, floral
	37	2-acetylpyrrole	1062	1060	90	Toasted, Pop corn
	38	Alpha-terpipeol	1174	1179	91	Eloral lilar

Figure 2. Sensory profiles of each cocoa variety with their respective liquor AZ and BF. a) Var1, b) Var2, c) Var3, d) Var4

· Correlation between Volatile Compounds and sensory attributes

mathematical models Functiona No Volatile Compounds Group 3-methylbutanoic acid Acids Χ, 2-methylbutanoic acid X_3 2-heptano Alcohols X4 2-nonanol 2-phenylethanol X₆ Benzaldehyde Aldehvdes 5-methyl-2-phenyl-2-hexenal 2-heptanone X₈ 2-nonanone Ketones Х₉

2-undecanone Ethyl octanoate

2-phenylacetate ethyl

-phenylethyl acetate

Ethyl dodecanoate

B-pinene

2,3,5,6-tetramethylpyrazine

Table 2. Volatile compounds for the structuring of

· Structuring of mathematical models

Equation 1. Cocoa attribute regression model

 $\begin{array}{l} Cocoa\left(X\right)=2.224-0.006X_{1}-0.008X_{2}+0.005X_{3}+0.008X_{4}+\\ 0.014X_{5}+0.005X_{6}+0.005X_{8}+0.001X_{9}+0.002X_{11}+0.001X_{12}+\\ 0.021X_{13}-0.001X_{14}+0.013X_{15} \qquad \mathbb{R}^{2}:0.85 \end{array}$

Equation 2. Floral attribute regression model

 $\begin{array}{l} Floral\left(X\right) = -0.317 - 0.035X_1 - 0.048X_2 + 0.044X_3 + 0.076X_4 + 0.061X_5 + 0.017X_6 + 0.041X_8 + 0.005X_9 + 0.014X_{11} + 0.001X_{13} - 0.036X_{14} - 0.020X_{15} + 0.002X_{16} & \mathbb{R}^2 : 0.70 \end{array}$

Equation 3. Fruity attribute regression model

 $\begin{array}{l} Fruity \left(X \right) = 0.538 - 0.005 X_1 - 0.006 X_2 + 0.002 X_3 + 0.003 X_4 + \\ 0.013 X_5 + 0.005 X_6 + 0.002 X_8 + 0.001 X_{11} + 0.001 X_{12} + \\ 0.027 X_{13} + 0.002 X_{14} + 0.019 X_{15} & {\rm R}^2 \, 0.89 \end{array}$

Equation 4. Nutty attribute regression model

X10

X₁₂

X₁₃ X_{14}

X₁₅ X₁₆

Esters

Others

Pirazynes

 $\begin{array}{l} \mbox{Nutty} (X) = 0.962 + 0.007 X_1 + 0.012 X_2 - 0.014 X_3 - 0.026 X_4 - \\ 0.008 X_5 - 0.001 X_6 - 0.014 X_8 - 0.002 X_9 - 0.004 X_{11} + 0.002 X_{12} + \\ 0.028 X_{13} + 0.016 X_{14} + 0.031 X_{15} - 0.001 X_{16} & \mbox{R}^2 \mbox{.} 0.87 \end{array}$

Equation 5. Sweet attribute regression model

 $\begin{array}{l} \text{Sweet} (X) = 1.458 - 0.009 X_1 - 0.012 X_2 + 0.009 X_3 + 0.015 X_4 + \\ 0.019 X_5 + 0.006 X_6 + 0.008 X_8 + 0.001 X_9 + 0.003 X_{11} + 0.001 X_{12} + \\ 0.017 X_{13} - 0.005 X_{14} + 0.009 X_{15} & \text{R}^2; 0.79 \end{array}$

Equation 6. Acid attribute regression model

 $\begin{array}{l} \mbox{Acid}~(X) = 4.840 + 0.015 X_1 + 0.020 X_2 - 0.016 X_3 - 0.027 X_4 - \\ 0.030 X_5 - 0.009 X_6 - 0.015 X_8 - 0.002 X_9 - 0.005 X_{11} - 0.001 X_{12} - \\ 0.021 X_{13} + 0.010 X_{14} - 0.009 X_{15} - 0.001 X_{16} & \mbox{R}^2 : 0.77 \end{array}$

5. Conclusions

SPME, GC-MS, GC-FID and sensory analysis techniques were implemented to study the aroma characteristics of 10 promising cocoa varieties from the department of Santander. The effect of temperature and extraction time of volatile compounds

SPME, GC-MS, GC-FID and sensory analysis techniques were implemented to study the aroma characteristics of 10 promising cocoa varieties from the department of Santander. The effect of temperature and extraction time of volatile compounds associated with aroma characteristics was observed, finding a temperature of 60°C and 40 minutes as optimal points to extract volatiles from cocoa liquors; these values were similar to those found in other researches. In addition, through chromatography and sensory analysis techniques, it was possible to identify and quantify 77 volatile compounds in the 20 cocoa liquors and 6 sensory attributes perceived in them. These results made it possible to determine the chemical and sensory profile of each of the liquors. The value data was able to mathematically model the 6 sensory attributes from the chemical profile of volatile compounds obtained. The predictor variables (volatile compounds) contributing to the modelling of the sensory attributes were reduced from 77 compounds to 16 volatile compounds. Although the prediction accuracy (R²) of the models is reduced on average from 87% to 81%, the models are more accessible and manipulable with 16 variables. However, the prediction accuracy obtained in other matrices such as cheeses (R²=81%), wines (R²=72%), coffee (R²=84%) and juices (R²=84%) inferring that the proposed in this variables. However, the proposed models largely describe the analysed data and predict the studied sensory perceptions with a good level of confidence.

7. References

J. Lozano et al., "Correlating e-nose responses to wine sensorial descriptors and gas chromatography-mass spectrometry profiles using partial least squares regression analysis," Sensors Actuators 8 Chem., vol. 127, pp. 267–276, Oct. 2007, doi: https://doi.org/10.1016/j.snb.2007.07.053.
M. Vilanova, Z. Genisheva, A. Masa, and J. M. Oliveira, "Correlation between volatile composition and sensory properties in Spanish Albariño wines," Microchem. J., vol. 95, no. 2, pp. 240, 2010.
M. Thomsen et al., "Investigating semi-hard cheese aroma: Relationship between sensory profiles and gas chromatography-offactometry data," Int. Dairy J., vol. 26, pp. 41–49, Sep. 2012.
C. Palenci-Blanco et al., "Proposal for a semi-quantitative method for the determination of volatile compounds in cocoa liquors," Respuestas, vol. 25, no. 1, 2020, doi: https://doi.org/10.22463/0122820X.2406.

6. Acknowledgement

To Sistema General de Regalías for the financial support of the to sistema General de Regalais tor the financial support of the research project entitled: "Investigación, desarrollo e innovación de cacaos especiales bajo sistemas agroforestales", BPIN code 201300100255. We would also like to acknowledge the researchers from CICTA - UIS and AGROSAVIA for their participation in the preparation of the samples.