Agronomic countermeasures for reducing cadmium (Cd) uptake in cacao plantations in Ecuador

Eduardo Chavez*, David Argüello and Erik Smolders

*fchavez@espol.edu.ec

Soil to plant relationship

 $log_{10}(Cd_Bean) = 1.66 + 0.94 \times log_{10}(soil Cd_T) - 0.21 \times pH - 0.63 \times log_{10}(\% OC)$ (R² = 0.57)

Parameter	95 % CI				
Intercept	1.42 – 1.90	Assuming all the average values	Increasing pH by 1 unit	Double %OC	
Soil Cd $_{T}$	0.86 – 1.01		Bean Cd = 0.42 mg kg ⁻¹	Bean Cd = 0.44 mg kg ⁻¹	
рН	-0.240.17	Bean Cd = 0.67 mg kg^{-1}	RF = 1.6	RF = 1.5	
%OC	-0 740 52				

Smolders E., 2022

Previous knowledge

Description	рН¥	SOC	WHC	Feox ^f	Alox ^f	Mn _{Ox} [£]	eCEC	Ca-exc ^ф	Total Cd
Description		%	(ml kg⁻¹)		g kg-1		cm	ol _c kg⁻¹	mg kg⁻¹
Field Trial Farm 1	6.6	1.18	380	4.02	1.01	0.40	14.5	13.3	1.01
Field Trial Farm 2	5.1	3.54	430	10.2	2.07	1.46	17.3	12.2	0.85
Incubation and column experiment	4.9	7.14	560	9.57	28.1	0.45	6.39	3.88	0.56

- Gypsum 2.8 kg planta⁻¹
- Compost 8.6 kg planta⁻¹
- Compost 17.2 kg planta-1

Treatments Farm 2

- Lime 2.8 kg planta⁻¹
- Lime 5.6 kg planta⁻¹
- Gypsum 2.8 kg planta⁻¹
- Gypsum 5.6 kg planta⁻¹
- Control

After 12 month of (last) application, soil pH is higher in limed soils by factors 1.07 to 1.4. These results were observed in these and other (n = 4) farms in the Amazon

Argüello et. al., 2022 submitted for publication

1-0

FARM 2 = ACID SOIL

Argüello et. al., 2022 submitted for publication

Foliar micronutrients were applied at doses (equivalent) to 6 kg ha⁻¹.

Zn, Mn and Fe in alkaline (pH > 7) soils

All micronutrients are applied as chelates (EDTA)

T!	Tratamiento	pН	Mat. Org	Zn *	Mn *	Fe *
Finca		(H2O)	(%)	mg kg ⁻¹	mg kg ⁻¹	mg kg ⁻¹
	T1	6.1 ± 0.2	3.90 ± 1.27	$183.4\pm.23$	410 ± 110	53.7 ± 6.70
	T2	6.1 ± 0.2	4.00 ± 0.64	158.2 ± 57.4	367 ± 61.5	58.7 ± 20.3
ц Т	Т3	6.2 ± 0.1	3.84 ± 0.47	183.3 ± 4.30	362 ± 59.8	60.1 ± 14.6
arr	T4	6.1 ± 0.1	3.15 ± 0.85	160.5 ± 39.1	400 ± 88.2	49.4 ± 13.3
LL.	T5	6.1 ± 0.1	4.52 ± 0.83	178.2 ± 29.0	406 ± 157.5	51.3 ± 4.2
	TC	6.1 ± 0.4	4.82 ± 0.21	162 ± 42.2	386 ± 147.5	53.2 ± 7.45
	T1	6.9 ± 0.2	2.13 ± 0.46	21.5 ± 1.20	427 ± 58.5	84.3 ± 8.11
2	T2	7.2 ± 0.2	2.24 ± 0.48	23.7 ± 4.60	351 ± 75.2	113 ± 40.3
3	T3	6.9 ± 0.5	2.05 ± 0.45	23.7 ± 7.60	375 ± 154	101 ± 28.8
-ari	T4	7.2 ± 0.6	1.64 ± 0.17	22.2 ± 5.60	403 ± 156	103 ± 8.71
-	T5	7.1 ± 0.6	1.89 ± 0.06	22.0 ± 6.80	376 ± 169	97.4 ± 30.5
	TC	7.2 ± 0.5	1.78 ± 0.41	19.2 ± 6.50	378 ± 176	72.2 ± 11.6
	T1	6.1 ± 0.2	3.83 ± 0.27	95.1 ± 41.4	215 ± 8.80	93.1 ± 29.7
ŝ	T2	6.3 ± 0.3	3.89 ± 0.60	81.6 ± 48.4	273 ± 107	77.4 ± 12.7
E	Т3	6.2 ± 0.1	3.15 ± 0.71	124 ± 22.3	291 ± 102	66.2 ± 10.2
Fa	T4	6.2 ± 0.1	3.20 ± 0.39	62.4 ± 4.30	168 ± 26.0	76.8 ± 15.2
	T5	6.3 ± 0.4	2.98 ± 0.41	101 ± 32.5	199 ± 45.5	57.8 ± 17.7
	TC	6.1 ± 0.1	3.60 ± 0.19	81.4 ± 16.7	180 ± 18.8	101 ± 26.5

Final remarks

- Soil properties can be modified which can lower soil/plant Cd.
- For acid pH soils (i.e., pH < 5.5), lime at a rate of 4 Mg ha⁻¹ is the most suitable alternative.
- Side effects of liming should be also address, decreased Zn availability and shallow penetration depth, for instance.
- For alkaline soils, the application of compost at a high rate (50 Mg ha⁻¹) or Zn, potentially lower bean-Cd. However, the effect is not as clear as liming. How to make the plants take more micronutrients?
- Monitoring farms will be maintained for 2-3 years. Best alternatives are now being extended to farmers.

Research partner

Graduate Students

David Argüello Eduardo Gutierrez Ruth Vanderschueren Julian Correa

Funding agencies/companies

rik@ll:o

VECO

