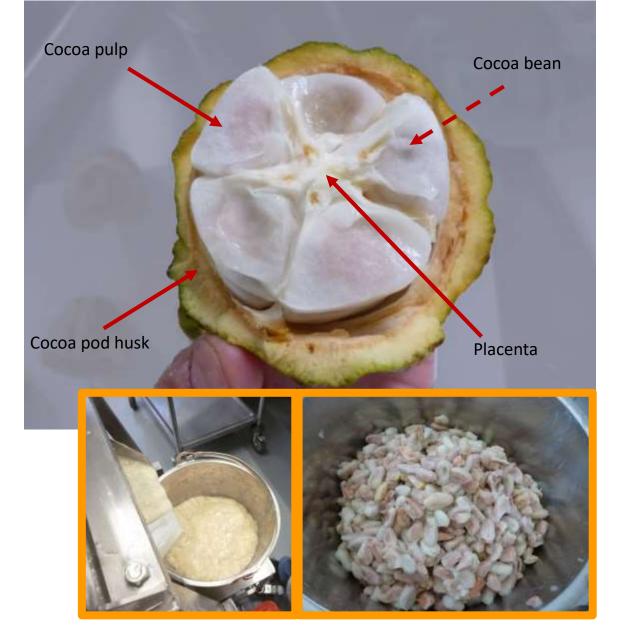


Fraunhofer Institute for Process Engineering and Packaging IVV

INFLUENCE OF ORIGIN AND THERMAL PROCESSING ON THE AROMA QUALITY OF COCOA FRUIT PULP FOR ITS USE AS A FOOD INGREDIENT

Thomas Bickel Haase ^{1,3*}, Ute Schweiggert-Weisz ^{1,2}, Eva Ortner ¹, Holger Zorn ^{3,4} and Susanne Naumann-Gola

1 Fraunhofer Institute for Process Engineering and Packaging IVV; Freising, Germany


2 Institute for Nutritional and Food Sciences, University of Bonn; Bonn, Germany

3 Institute of Food Chemistry and Food Biotechnology, Justus-Liebig University; Giessen, Germany

4 Fraunhofer Institute for Molecular Biology and Applied Ecology (IME); Giessen, Germany

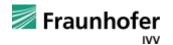
Cocoa, more than just beans

- Production of around 5.2 million tons of beans in 2021
- Cocoa beans make up only 20-30% of the fruit.
- About 70-80% of the biomass is lost in the process.
- European consumers want sustainable and new products.
- Partial de-pulping prior fermentation can accelerate this step and improve the later quality of cocoa beans.
- In 2019 cocoa pulp was approved by EFSA as an ingredient from a third country.
- Cocoa pulp has not been completely characterised



How does the origin affect the composition of cocoa pulp?

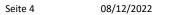
JUSTUS-LIEBIG-


IESSEN

 \mathbf{COC}

Seite 3

08/12/2022



PERMIT

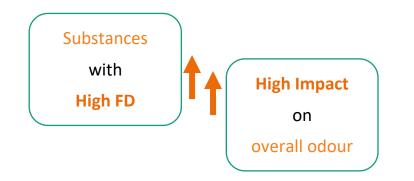
Federal Ministry of Education and Rosearch

Chemical composition of cocoa pulps from different origins

Sample	Dry Matter [%]	pH-value [-]	Brix [%]	Water activity [-]	Ash [% in the DM]	Protein [% in the DM]	Fat [% in the DM]
Vietnam	19.72 ± 0.0	3.50 ± 0.0	17.47 ± 0.2	0.9823 ± 0.001	1.68 ± 0.0	4.67 ± 0.0	0.8 ± 0.0
Cameroon	19.23 ± 0.3	3.85 ± 0.0	16.1 ± 0.1	0.9923 ± 0.003	2.15 ± 0.0	4.44 ± 0.03	0.27 ± 0.0
Indonesia (SUL1)	11.21 ± 0.2	4.06 ± 0.0	9.73 ± 0.1	0.9840 ± 0.005	2.29 ± 0.1	4.73 ± 0.02	0.31 ± 0.1
Indonesia (SUL2)	16.85 ± 0.1	3.39 ± 0.0	15.30 ± 0.3	0.9860 ± 0.002	1.81 ± 0.1	3.28 ± 0.04	0.35 ± 0.0
Indonesia (MCC2)	28.59 ± 0.0	4.04 ± 0.0	25.97 ± 0.2	0.9641 ± 0.003	1.79 ± 0.1	4.50 ± 0.05	0.21 ± 0.0
Nicaragua (TSH565)	14.36 ± 0.7	3.68 ± 0.0	16.53 ± 0.1	0.9820 ± 0.002	n.d	8.29 ± 0.05	n.d.

PERMIT

Federal Ministry of Education and Research


Aroma Properties of Cocoa Fruit Pulp from Different Origins

- 65 aroma-active regions within FD 2 and FD 1024
- 36 odorants identified in all cocoa pulps

Seite 5

08/12/2022

- Aldehydes were the most predominant group, followed by carboxylic acids, lactones, phenols and ketones.
- Some odorants with high FD factors: *trans*-4,5-epoxy-(*E*)-decenal, 2- and 3-methylbutanoic acid, 3-(methylthio)propanal, 2-isobutyl-3methoxypyrazine, (*E*,*E*)-2,4-nonadienal, (*E*,*E*)-2,4-decadienal and linalool

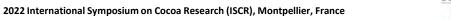
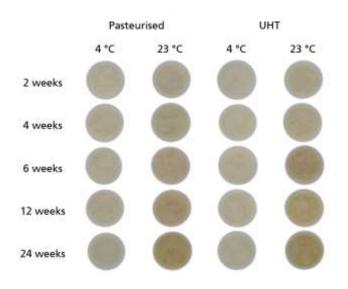


Table 1: Aroma description of cocoa pulp distillates from different origins

Origin	Aroma description				
Indonesia	Fatty, cheesy, green and phenolic				
Vietnam	fatty, green and smoky				
Cameroon	butter-like, popcorn-like, flowery and fruity				
Nicaragua	fruity, flowery, but also exhibited honey, clove and vanilla-like notes				

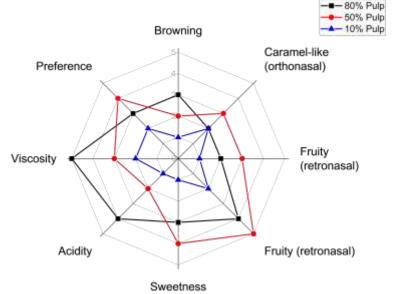
Federal Ministry of Education and Rosearch


Fraunh

Effects of thermal processing technologies on the sensory profiles, aroma composition, colour and microbiological stability

- Transport of fresh fruits is costly
- High water content (>80% of the total weight)
- High sugar content (13% in the fresh weight)
- Need for processing protocols to preserve cocoa pulp
 - Pasteurisation (80°C, 20 min)
 - UHT (135°C, 30 s)
- Sensory profiles by descriptive methods and GC-MS/O
- Microbiological analyses
- Colour determination
- Storage tests for 24 weeks at 4 °C and 23 °C

https://www.agcs.allianz.com/news-and-insights/


Federal Minist of Education and Research

Cocoa pulp production in Indonesia

- Preservation trials with farmers' cooperative in Bali
- Pulp from partially de-pulped cocoa beans.
- Dilution 1:1 scored highest in preference, but was highly viscous. Dilution 1:9 showed an ideal viscosity but lacked in sweetness.
- Pasteurisation took place at 80 °C for 10 min.
- Room for hygienic production is in planning.
- Commercialization of pulp beverages in Jakarta and Bali.

Special acknowledgement: Ariza Sari Budi (ICCRI)

Conclusions

- Cocoa pulp from different origins exhibit different aroma properties, enabling a broad range of food products.
- Pasteurisation and UHT are suitable and reliable technologies for cocoa pulp preservation. However, performing a pasteurisation at farm level requires less apparatus effort.
- A cold storage is recommended to maintain the cocoa pulp's colour and prolong the aroma profile.
- Diluting the pulp facilitates the preservation and filling steps.
- By processing and selling cocoa pulp, farmers may profit from new sources of income.

"Our motivation is that innovation [...] will be able to bring cocoa farmers to a better direction. [...] we want to get additional income from the cocoa pulp process." -Cocoa farmer, Bali, 14.10.2022

Thank you for your attention!

Fraunhofer Institute for Process Engineering and Packaging IVV

Contact

Thomas Bickel Haase Food Process Development – Fraunhofer IVV Tel. +49 8161 491-473 thomas.bickel.haase@ivv.fraunhofer.de