

Transcriptomic response of cocoa (*Theobroma cacao* L.) genotypes to water-deficit stress: Implications for drought tolerance

Ramesh S.V.*,1, Hebbar K.B.*,1, Rajesh M.K.1, Sandip Shil2, Elain Apshara3

¹ICAR-Central Plantation Crops Research Institute, Kasaragod- Kerala-671124, India ²ICAR-Central Plantation Crops Research Institute, Regional Centre, West Bengal, India ³ICAR-Central Plantation Crops Research Institute, Regional Station, Vittal, Karnataka, India

(*Correspondence: ramesh.sv@icar.gov.in; hebbar.kb@icar.gov.in)

Outline

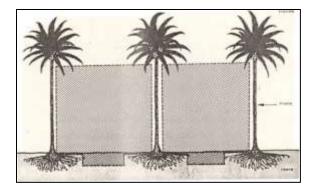
Cocoa in India

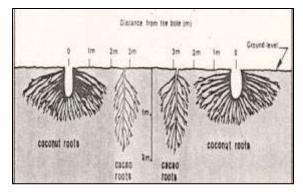
Screening for drought tolerance

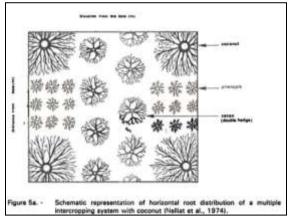
Physiological and biochemical parameters for drought tolerance

Transcriptomics of cocoa genotypes to water-deficit stress

Conclusion




Cocoa in India


1798 1930-1935 1955	Courtallam in Tirunelveli dt., 1873- Burliar fruit station Plantings were done with Criollo and Forastero Research at Kallar/ Burliar under ICAR
	Western Ghat hills & plains- rains both monsoons, short dry seasons (Madras, Mysore and Malabar states)
1962 1964	ICAR- Criollos in South India, Forasteros in NE India CPCRI (Arecanut + Cocoa, Coconut + Cocoa) Vittal, Peechi, Palode, Kahikuchi
1968-69	ICAR-CPCRI, Vittal- Improvement

(Malhotra et al., 2016)

Air/soil/root space in plantations

Nelliat et al., World Crops 26(6): 262-266

Cocoa in Indian plantations

Cocoa in India -dry period of 4–6 months: Supplemental irrigation Annual RF < 1200–1600 mm: significant losses in the development and productivity

Selection of drought tolerant genotypes at seedling stage: morpho-physiological traits to discriminate water deficit stress to accelerate breeding cycle

Cocoa in India

State	Area (000'ha)	Production (000' MT)	Productivity (kg/ha)
KER	17.36	10.10	850
KAR	14.21	03.90	525
AP	39.72	11.40	950
TN	32.08	02.90	350
Total	97.56	27.07	669

Demand of chocolate industry and confectionaries: 50,000 MT of dry bean per annum

(DCCD, GoI & © Statista 2022)

Alban et al., Ind J Plant Physiol. (2016) 21(1):23-30

- Stomatal resistance, chlorophyll fluorescence, water potential, specific leaf weight and epicuticular wax contents etc
- A total of 216 cocoa genotypes have so far been screened
- NC 23/43, NC 29/66 and NC 42/94 are drought tolerant and utilized in hybridization programmes
- 2 hybrids developed (VTLCH3 & VTLCH4)

(Apshara et al., 2019)

- thick leaf
- higher epicuticular wax content
- efficient stomatal closure, and
- high tissue elasticity

(Apshara et al., 2019; Balasimha et al., 2013)

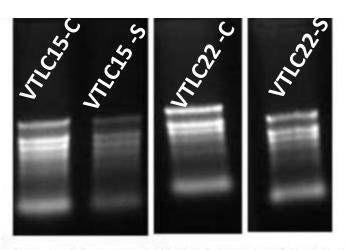
Soil moisture content (%)	20%-50%		
	FC		
Physiological traits			
Stomatal resistance (s/cm)	≥ 10.77		
Conductance (mole/m ² /s)	≤ 0.36		
Transpiration rate (m mol/m²/s)	≤ 0.99		
Leaf water potential (Bar)	≥ -19		
Photo (µmol/m²/s)	≥ 9.62		
CO _{2 int} (ppm)	≥300		
WUE (Pn/E)	≥ 10.49		
Pn/C _{int}	≥ 0.032		
Chlorophyll fluorescence (Fv/Fm)	≥ 0.31		
Epicuticular wax (μg/cm ²)	≥ 20.58		

Biochemical metabolites		
Total Soluble Sugar (µg/gMF)	≥ 16.86	
Amino Acid (µg/gMF)	≥ 2.05	
Proline (µg/gMF)	≥ 0.048	
Protein (µgBSA/mgMF)	≥ 0.84	

Antioxidant enzymes			
MDA (mmol)	≥ 0.04		
SOD (Specific activity/ ≥ 0.5 min/protein)			
CAT (Specific activity/ min/protein)	≥ 0.07		
POX (Specific activity/ ≥ 0.83 min/protein)			
PPO (Specific activity/ min/protein)	≥ 0.147		

(Apshara et al., 2019; Balasimha 1999; Balasimha et al., 2013)

Water-deficit stress on the growth and physiology of cocoa seedlings


Physiological	VTLC22		VTLC15	
Parameters	Control	Stressed	Control	Stressed
	(100% FC)	(50% FC)	(100% FC)	(50%
				FC)
Leaf water	-12.98	-16.20	-7.52	-12.03
potential (bars)				
Stomatal	2.51	11.47	3.04	7.61
resistance (R _s)				
Stomatal	0.27	0.29	0.49	0.37
conductance (g_s)				
(mol m ⁻² s ⁻¹)				
Water use	38.45	25.44	20.17	18.93
efficiency				
(WUE) (Pn/E)				

VTLC 22 : good photosynthetic activity; water use efficiency; high CO₂ accumulation Good leaf gaseous exchange parameters

High quality read data statistics

Sample	No. of PE reads	No. of Total Reads	Data (Gb)
VTLC15 (Control)	34,851,626	69,703,252	10.3
VTLC15 (Stressed)	32,636,232	65,272,464	9.6
VTLC22 (Control)	28,976,082	57,952,164	8.5
VTLC22 (Stressed)	31,944,637	63,889,274	9.4

Analysis pipeline

High quality reads of cocoa transcriptome

T. Cacao (https://www.cacaogenomedb.org/Tcacao_genome_v1.1)

HQ reads aligned HISAT2 (version-hisat2-2.0.5)

SAMtools (version-0.1.18, http://samtools.sourceforge.net/)

Binary alignment/map (BAM) file

Mapped reads ratio (MRR) to the reference in each dataset

Differential gene expression (Cuffdiff in cufflinks package)

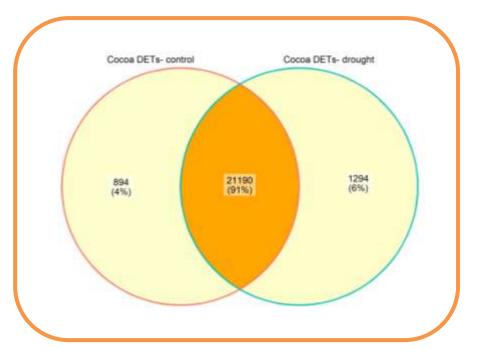
GO-BLAST2GO

KEGG- KEGG automatic annotation server (KAAS)

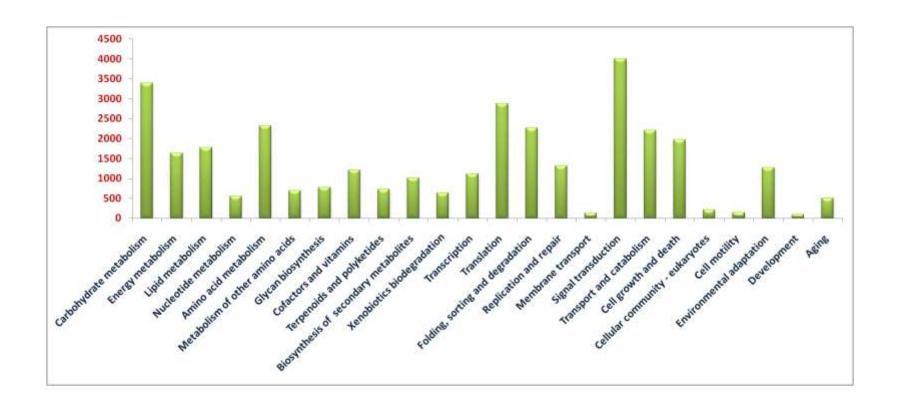
IncRNA-INFERNAL v-1.1.1 tool

Statistics of mapped reads

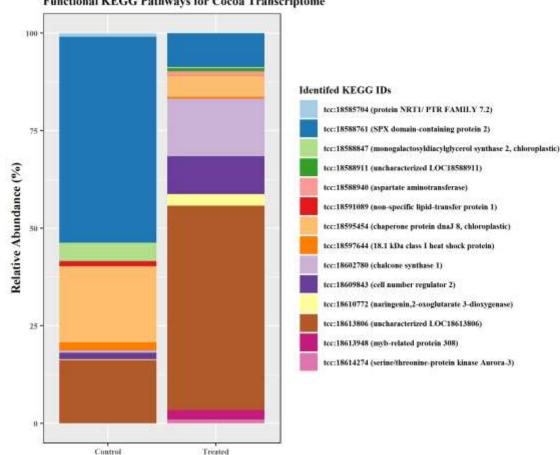
Sample	% of mapped reads	No. of transcripts assembled
VTLC15 (Control)	92.98%	21995
VTLC15 (Stressed)	92.53%	22161
VTLC22 (Control)	94.46%	25572
VTLC22 (Stressed)	93.37%	22744

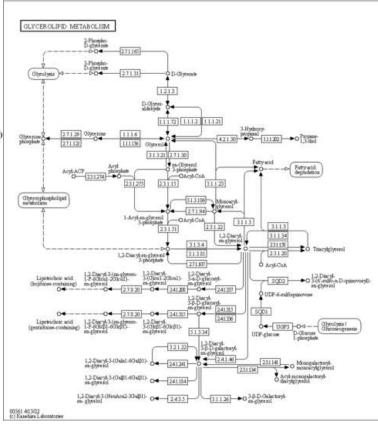

The clean RNA-seq (Illumina paired-end) reads mapped to the Cacao Genome Database (CGD) based on Matina 1-6 cultivar

The clean RNA-seq (Illumina paired-end) reads mapped to the Cacao Genome Database (CGD) based on Matina 1-6 cultivar

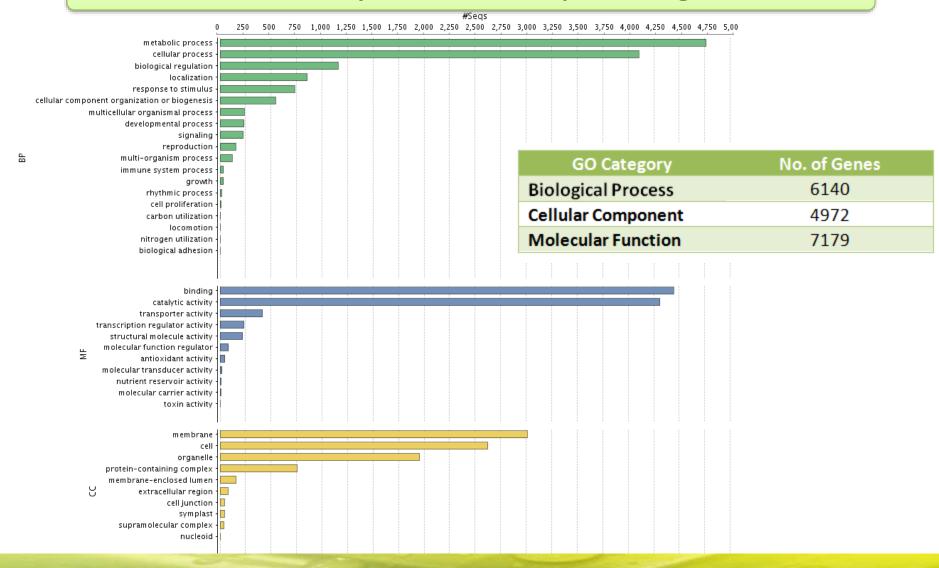

Around 6% of the transcripts (1294) are modulated by drought in both the genotypes

Functional analysis of modulated transcripts-KEGG pathways

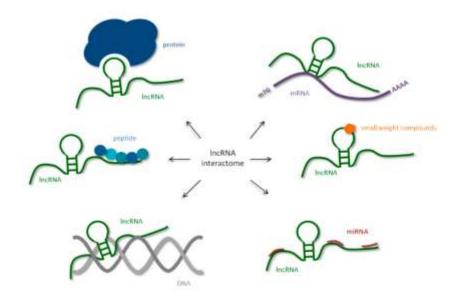




Functional KEGG Pathways for Cocoa Transcriptome


Drought in cocoa activates glycerolipid metabolism, chalcone synthase, genes involved in cell number regulator, aspartate amino transferases, MYB-related protein among others

Functional analysis of cocoa transcripts-GO categories



Long non-coding RNAs (LncRNAs) of cocoa in response to drought

Conserved IncRNA families of more than 10 members were identified
94 drought-responsive IncRNAs (35 up- and 59 down-regulated, respectively)
32 pairs are *cis*-NATs

Non-coding RNAs

Conserved IncRNA families: tRNA, snoR71 and LSU_rRNA accounted for >10 members

Small nucleolar RNA families (SNORD14, SNORD18, SNORD25, snoR71, snoR116) constituted the major categories of lncRNAs

miRNA 159, miR-395, miR172, miR396, miR397, mir169, miR535, miR162, miR403,

Conclusions

Biomarkers (transcriptome-based RNA signatures, small non-coding RNAs, genic SSRs) to screen genotypes for water deficit stress tolerance

A panel of cocoa accessions are being screened for water stress tolerance utilizing the combination of biochemical, physiological and molecular features

Speed breeding of drought tolerant cocoa genotypes?

Acknowledgements

Indian Council of Agricultural Research (ICAR)

ICAR-Central Plantation Crops Research Institute (Project No: 1000766014)

DST-SERB & DBT-CTEP, Government of India

Organizers- ISCR-2022

Agrisearch with a Buman touch