

A novel method for estimating cocoa crop losses related to pest and diseases in the Peruvian Amazonia.

Presented by: Marcos J. Ramos

Authors:

Marcos J. Ramos (UMR ABSys, UMR PHIM, CIRAD - France; SENACYT - Panama - marcos-javier.ramos@cirad.fr),

Clémentine Allinne, PhD (UMR ABSys, CIRAD - France),

Jhoner Alvarado (FUNDAVI - Peru),

Bruno Rapidel, PhD (UMR Absys, CIRAD - France),

Leïla Bagny-Beilhe, PhD (UMR PHIM, CIRAD - France)

Cocoa Production in San Martin

Most productive cocoa zone of Peru

Cocoa crops have social, environmental and economic importance

90% of the cocoa varieties are CCN-51

P&Ds pose severe constraints

Análisis Integral de la Logística en el Perú 2016

P&Ds Complex in San Martin

Up to 60% incidence of the most damaging P&Ds

Impact of these P&Ds is not necessarily additive

The Sanitary Harvest is a common practice

Available Markets differ in terms of the seed quality they purchase

Ninnin 2020

Cocoa Markets in San Martin

Local Conventional & Organic Markets

Local "Black" Market

As affected seeds are still exploitable, estimating the damage can help in decision making

How can we estimate yield loss & crop loss related to P&D incidence?

Incidence to track presence of P&Ds

Severity not available

No integrative indicator

Develop a mathematical model to estimate yield loss related to cocoa pods P&Ds Establish a yield loss due to individual and combined P&D incidence

Fit model for identified markets to estimate crop losses

Materials & Methods - Data Collection

a. P&Ds Combinations per pod

- 30 Pods per Combination, different cocoa plots
- b. Pod's Phenological Stage for Harvest
- → On P&Ds symptoms appearance
- → Pods close to maturation

c. Seed Damage Classes **Affected** Seeds (AS) Destroyed Seeds (DS) Healthy Seeds (HS)

Materials & Methods - Data Analysis and Methodology Development

d. Seed's Damage Ratio per Pod (SDR) for each P&Ds Combination:

 ASR_i = **Affected Seeds Ratio** for each P&D combination

$$ASR_i = \frac{\sum_{i=1}^{n} \left(\frac{AS_i}{S_i}\right)}{n} * 100$$

 DSR_i = **Destroyed Seeds Ratio** for each P&D combination

$$DSR_i = \frac{\sum_{i=1}^{n} \left(\frac{DS_i}{S_i}\right)}{n} * 100$$

 SDR_i = **Seed Damage Ratio** for each P&D combination $SDR_i = ASR_i + DSR_i$

AS_i = Total number of affected seeds in evaluated pod

S_i = Total number of seeds in evaluated pod

n = Total number of evaluated pods with evaluated P&D Combination

DS_i = Total number of destroyed seeds in evaluated pod

Average Seeds per Pod (meanS) for CCN-51 = 46

Results - Seed Damage Ratios (SDRs) for each P&D

Seed Ratio Percentage

Frosty Pod Rot → Most damaging P&D in the zone

American Pod Borer → Least amount of damage caused

American Pod Borer + Black Pod

→ Appear to synergize,
increasing damage

Materials & Methods - Data Analysis and Methodology Development

e. Yield Loss

Yield Loss =
$$\sum_{i=1}^{n} (AP \times IC_i \times meanS \times SDR_i)$$

AP = Total Number of Affected Pods IC_i = Incidence of each P&D Combination meanS = Average Seeds per Pod (46) SDR_i = Seed Damage Ratio per Pod of each P&D Combination n = Number of P&D combinations

Modified versions of this equation were utilized to estimate the crop loss

Materials & Methods - Model Application

e. Market Simulations (Crop Loss - CL)

Seed	Crop Loss	Gain from Healthy Pods	Gain from Affe	ected Pods	Destroyed	
Туре	$CL = [P * \Pi L]$	Healthy Seeds		Affected Seeds	Seeds	
Market	- [Gain from Healthy Pods + Gain from Affected Pods]	$[(P-AP)*\Pi L]$	$\sum_{i=1}^{n} ((AP * IC_i) * (1 - SDR_i) * \PiL)$	$\sum_{i=1}^{n} ((AP * IC_{i} * ASR_{i}) * \PiB)$		
Local Conventional(ΠL) - 1.83€/kg	CL	X	X			
Local Organic(ΠL) - 1.93€/kg	CL	X	X			
Local Black(ΠB) - 1.63€/kg				X		

 $\Pi L = Local Market Index - Product of (meanS * SW * MV_{Local}) to calculate the gain in the Conventional and Organic Markets$

P = Total number of pods

AP = Total affected number of pods

IC_i = Incidence of each P&D Combination

 $\Pi B = Black Market Index - Product of (meanS * SW * <math>MV_{Black}$) to calculate the gain in the Black Market

MV_{Black} = Black Market Value

Discussion & Conclusion

- The SDRs originate from a **simple model**, allow **easy yield loss quantification and are versatile**

- Crop Loss Estimation can support decision making. This may help farmers & technical personnel to:
- Prioritize most damaging P&Ds
- Prioritize specific control practices

Adjust investment strategies

Acknowledgments

- All the Farmers
- Dr. Clementine Allinne
- Dr. Leila Bagny-Beilhe
- Dr. Bruno Rapidel
- Lic. Jhoner Alvarado
- My Colleagues at CIRAD

Ø cirad

